
AFRL-SR-AR-TR-09-0089

REPORT DOCUMENTATION PAGE

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing the burden, to the Department of Defense, Executive Service Directorate (0704-0188) Respondents should be aware that notwithstanding any other provision of law, no
person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION.
1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE

Progress Report
3. DATES COVERED (From - To)

5/15/2008-11/30/2008
4. TITLE AND SUBTITLE

*i rrnmi" nrli firr Ptnicninr; I'uliihl? finft" iirrilntrnTivr tyntimti

5a. CONTRACT NUMBER

5b. GRANT NUMBER

FA9550-08-1-0158

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Dr. Irem Y. Turner
Associate Professor
Oregon State University

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
School of Mechanical, Industrial, and Manufacturing Engineering
204 Rogers Hall
Oregon State University

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Mirwfco PA 7nob

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUtlON/AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES 20090325287
14. ABSTRACT
Software-driven hardware configurations account for the majority of modern complex systems. The often costly failures of such systems can be
attributed to software specific, hardware specific, or software/hardware interaction failures. The understanding of the propagation of failures in a
complex system is critical because, while a software component may not fail in terms of loss of function, a software operational state can cause an
associated hardware failure. This research is to develop high-level system modeling approaches to model failure propagation in combined
software/ hardware system (FFIP). The end goal is to identify the most likely and highest cost paths for fault propagation in a complex system as
an effective way to enhance the reliability of a system. Through the defining of functional failure propagation modes and path evaluation, a
complex system designer can evaluate the effectiveness of system monitors and comparing design configurations. With the main principles
underlying the FFIP approach already established, this research will enable the definition, development, formalization, implementation, and
demonstration of the fundamental rules and propagation mechanisms for the FFIP framework for software driven systems.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (Include area code)

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Sid. Z39.18

Adobe Professional 7.0

W\S50~ G?-I-QIS8
Proceedings of IMECE2008

2008 ASME International Mechanical Engineering Congress and Exposition
November 2-6, 2008, Boston, Massachusetts, USA

IMECE2008-68861

Modeling the Propagation of Failures in Software Driven Hardware Systems to
Enable Risk-Informed Design

David C.Jensen
Graduate Research Assistant

Complex Engineered Systems Design Laboratory
Oregon State University, Corvallis, Oregon, USA

jensend@engr.oregonstate.edu

Irem Y. Turner
Associate Professor

Complex Engineered Systems Design Laboratory
Oregon State University, Corvallis, Oregon, USA

irem.tumer@oregonstate.edu

Tolga Kurtoglu
Research Scientist

Mission Critical Technologies
NASA Ames Research Center
Moffett Field, California, USA

tolga.kurtoglu@nasa.gov

ABSTRACT
Software-driven hardware configurations account for the
majority of modern complex systems. The often costly failures
of such systems can be attributed to software specific, hardware
specific, or software/hardware interaction failures. The
understanding of the propagation of failures in a complex
system is critical because, while a software component may not
fail in terms of loss of function, a software operational state can
cause an associated hardware failure. The least expensive phase
of the product life cycle to address failures is during the design
stage. This results in a need to evaluate how a combined
software/hardware system behaves and how failures propagate
from a design stage analysis framework.

Historical approaches to modeling the reliability of these
systems have analyzed the software and hardware components
separately. As a result significant work has been done to model
and analyze the reliability of either component individually.
Research into interfacing failures between hardware and
software has been largely on the software side in modeling the
behavior of software operating on failed hardware.

This paper proposes the use of high-level system modeling
approaches to model failure propagation in combined software/

hardware system. Specifically, this paper presents the use of the
Function-Failure Identification and Propagation (FFIP)
framework for system level analysis. This framework is applied
to evaluate nonlinear failure propagation within the Reaction
Control System Jet Selection of the NASA space shuttle,
specifically, for the redundancy management system. The
redundancy management software is a subset of the larger data
processing software and is involved in jet selection, warning
systems, and pilot control. The software component that
monitors for leaks does so by evaluating temperature data from
the fuel and oxidizer injectors and flags a jet as having a failure
by leak if the temperature data is out of bounds for three or
more cycles.

The end goal is to identify the most likely and highest cost paths
for fault propagation in a complex system as an effective way to
enhance the reliability of a system. Through the defining of
functional failure propagation modes and path evaluation, a
complex system designer can evaluate the effectiveness of
system monitors and comparing design configurations.

Contact Author: 541-737-6627 Copyright © 2008 by ASME

INTRODUCTION
Numerous products currently being designed or manufactured
incorporate hardware and software components. For safety
critical systems simple reliability analysis approaches that
ignore the complex interactions of these components are
insufficient. What is needed instead is a single model that can
incorporate software and hardware as well as their interactions.
The basic building blocks are clearly different for software and
hardware, indicating that a combination of lines of code and
nuts and bolts will not produce a viable model. The
fundamental differences between hardware and software and
their associated failures often lead to the use of different
reliability methods and metrics for these two components of
complex systems. An integrated approach to reliability would
thus have to incorporate software and hardware in a similar way
in order to accurately represent the reliability of the total
system. One such paradigm useful for system design is the
functional approach. Functional representations can be found in
both the fields of software and hardware reliability. This paper
demonstrates how the functional failure identification and
propagation framework (FFIP), developed by Kurtoglu and
Turner in [1, 2] can be used for analyzing the software and
hardware components of a complex system in a single model
that captures important information on failure propagation and
system design. As an addition to the established framework, a
failure propagation analysis method is demonstrated with a
software-driven hardware system that allows for linear failure
representation.

BACKGROUND

Difference in software and hardware reliability
The area of complex software driven system reliability can be
seen as the convergence of the two well established fields of
software and hardware reliability. This generally leads to
analyzing the reliability of software and hardware components
separately then combining and modeling the interactions
between the two different systems. The fundamental
differences between these two domains of engineered systems
and their associated expertise provide reason for this separate
analysis. Such differences include the type and occurrence of
failures experienced by each system and can be easily illustrated
in a stochastic approach. Where hardware components may
experience independent failures, software failures are not
independent [3]. Secondly, the probabilities of failure are
markedly different. As a hardware system ages, physical
degradation leads to predictable and repeatable failures in
contrast to software, which tends to become more reliable as the
random failures are removed through testing and updating while
in operation. In combined software/hardware systems there are
additional sources of failure from the interaction of these two
systems. Hardware can operate outside of software design

leading to failure and alternatively software can operate outside
the feasible physical reality of hardware components [4],

Combined approaches
One exception to the approach to dealing with hardware
systems and software systems separately is found in the
literature of computer and communications engineering^, 6].
Computer hardware components tend to be operated at their
technological maximum operating capacities increasing the
awareness of hardware faults on software systems and their
subsequent inclusion into reliability analysis. For this latter
reasoning there is a rich breadth of published studies on
reliability of software/hardware interactions analyzing computer
systems [5-8]. However, this area is limited to failure of
hardware that the software is operating over and does not
adequately reflect the failures of mechanical hardware found
outside of the computer. This paper uses the functional failure
identification and propagation (FFIP) method to analyze the
reliability of hardware and software components of a system
simultaneously [1]. However, to adequately cover the previous
work, the two fields of software and hardware reliability are
addressed separately next.

Software reliability
The prediction of failures in a software system is generally
approached with three different analysis methods: error seeding
and tagging, data/input domain analysis, and time domain
analysis. Error seeding is a testing stage approach where
software faults and data errors are injected into a system. The
resulting system performance is measured and errors are
tracked. This data can be used to quantify the expected
reliability of the system in operation to a reasonable degree of
certainty. However, error seeding is a time intensive process
and requires a fully written code to be applicable [9|. The more
common approach is a time domain reliability model. Using
this method, many different software reliability growth models
(SRGMs) have been developed and have been shown to be
useful for different applications. These are in essence
probabilistic models used to predict failure over the useful life
of the software. Examples such as Wiebull and Gamma failure
time class models, infinite failure category models and several
others can be found in [10]. The previous reliability methods
require some form of actual software code to evaluate. A design
stage approach is considered in [II] which describes a method
of analyzing reliability based on software failure modes and the
probability of those failures.

Hardware reliability
In practice, the three main hardware reliability methods are
FMEA, FTA and PRA. Failure modes and effects analysis
(FMEA) is a tool for analysis of risk of a system down to a
desired component level fidelity. By linking the likely failure
modes and resulting system effect for each component FMEA
offers a designer a means to evaluate overall reliability of the
system [12]. Fault tree analysis (FTA) is an incident focused

Copyright © 2008 by ASME

method that starts with an undesirable system event and then
works baekwards to define the contributing events that would
lead to a higher level event. FTA uses Boolean logic
descriptors to combine all the possible events that may lead to a
failed state and is represented in a tree structure [13].
Probabilistic risk assessment (PRA) combines event sequencing
diagrams and fault trees to develop a stochastic model of the
overall system reliability [14]. PRA is similar to software's use
of SRGMs, however, different assumptions on independency of
faults are considered for software and hardware making it
difficult to apply this to an integrated system. Variations of
PRA include simulation of system elements [15]. Methods for
including software into these techniques have been presented in
[11,16],

Functional approach
To make risk-informed design stage decisions it is necessary to
represent a system, in a way that provides useful information
about the system while broad enough for multiple design
comparisons. In the design stage, the component level
reliability is generally unknown because the actual components
have not been finalized. Instead, system components can be
represented as sub-functions of the overall system function.
The risk for different functions can be assessed individually and
in a general way allowing for design comparison. The
functional modeling method dissects a system and represents it
as the combinations of multiple sub-functions linked by one or
more representative "flows". For software, functional
representations can be found within object-oriented design and
in systems engineering [17, 18]. In object modeling the
functional model can be graphically represented as operating
functions linked by the flow of information in data flow
diagrams [18]. In hardware systems the functional basis (FB) is
one example of system level functional representation, where a
system is dissected into functional components linked by flows
of energy, material, and information[19, 20]. The FB serves as
rule set for the syntax of functions as verb-noun pairs that
operate on the incoming flows. This type of functional
description is the basis for various extensions such as the
function design framework and the function failure design
method [21, 22], The previous methods have shown the
practical use of functional modeling for hardware systems. This
research presents the simultaneous analysis of complex
software-hardware systems within the functional failure
identification and propagation framework (FFIP).

other components is useful for clarity. The functional model
follows the guidelines of the FB and expresses the system as
interconnected functions. The actual structure of the system is
represented with a configuration flow graph (CFG). The CFG
contains the structure of the system with real (though
generalized) components and the standard FB flows. The direct
mapping of the functional model and configuration model
provides a way for designers to see how the particular
functional requirements of a system are met with each system
component. The component behavioral model is built with the
compilation of the possible finite states of each functional
component. Transitions between these states occur at events or
through component failures. Behavior modeling has been
shown to be effective in model-based diagnosis (MBD) for
management systems and artificial intelligence [23. 24]. MBD
is an operational method that demonstrates the usefulness of
predictive state monitoring. In the functional design paradigm,
behavioral simulation offers the ability to evaluate failure and
failure propagation. The behavioral simulator is a finite time
sequence of events that modify component behavior. The
purpose of this modification is to demonstrate overall system
behavior through possible component failures. The simulator
allows for simultaneous and sequential failures guided by the
function failure logic (FFL). This last reasoner is a set of
component specific rules that describe a component's state
based on input and output flows from the functional component.
The rules of the FFL describe how failures propagate through a
system by mapping the relationship between the functional
model and the configuration flow graph.

CONTRIBUTIONS
This research focuses on extending the FFIP framework to
analyze failure propagation in a software-driven hardware
system. Incorporation of software into FFIP is an advancement
in the field of complex system reliability analysis and this work
demonstrates how failure propagation identification can be used
to evaluate the effectiveness of software control of a system.
The example system presented in this paper has been used as a
model based approach to evaluate a system in operation in [25].
The use of the FFIP framework allows for a design stage
analysis and design comparison. The specific results identify
how analyzing failure propagation behavior provides
information on the effectiveness of system monitors and key
components that act as a nexus for the propagation of failures.

FFIP
The functional failure identification and propagation framework
is a graphical evaluation tool that incorporates a functional
system model, a configuration model, a behavior model, a
system behavior simulator, and a function failure logic reasoner.
A thorough discussion of the application process and the
advantages of FFIP over other reliability methods are presented
in [1,2]. While the focus of this current paper is on the
formulation of the behavior model, a brief description of the

METHOD
Before presenting the results, the assumptions in this paper must
be clarified. This paper uses the Functional Basis [19| for
defining material, energy and information flows as well as the
functional behavior of system components. In practice it may
be most effective for an application specific repository of
functional behavior in place of the Functional Basis. Secondly,
these functional representations of components have distinct
failed states dependent on the flow of material, energy, or

Copyright © 2008 by ASME

information through them. Identification of these distinct failed
states will become important as the path of the propagation of
failure through the system is dependent on component behavior.
Finally, it is necessary to define how failure flows through a
system. In this methodology, failure is shown to propagate
linearly along the paths of material, energy and information
flows and affects each component differently.

Approach
The proposed methodology is applied by: I) Creating the
component and functional model for the system to be analyzed;
2) Identifying the distinct failed states for each component
based on specified input flow and output flows; 3) Identifying
system monitors and components that actively affect the
propagation of failures; 4) Establishing scenarios of one or
more initiating failures; 5) Finally, comparing multiple
scenarios to identify effective design changes that mitigate
failure. Steps 1 and 2 are the FFIP framework while steps 3-5
reflect the propagation analysis being advanced in current
research.

Step 1. Creating the configuration and functional models
The configuration model represents the actual design being
considered and is developed from the functional model. The
functional model will be the combination of all the functions
that the system must contain. Functional modeling for the
hardware components of the system is straight forward and well
established [1]. The software components of the system can be
functionally modeled and modularized with an object orientated
programming or a general systems engineering approach [17,
18]. At this point the flows of energy, material, signal and data
are identified and mapped through the system.

Step 2. Identifying component operating states (component
behavioral model)
Because this design paradigm uses abstract functional
representations, identifying exact operating states can be
challenging. For some mechanical applications the distinct
failed states are apparent, for a simple valve, the states would
be; failed open, failed closed, or nominal operating. Identifying
failed states for functional software components is limited to the
knowledge of how that component is structured [17]. For this
reason there are two levels of identifying failed states.
Components that have unknown failed states can be analyzed as
nominal or failed based on their ability to operate on the
incoming flow. A nominal state is one where a component is
operating on a flow with the exact functionality intended by the
designer. A failed state is when a component acts on the flow in
a way that it was not designed to. including not acting on the
flow at all or only limited action. The distinction between
nominal and failed states provides a way for analyzing how the
failure affects the component it is propagating through. This

allows for linear analysis of failure propagation even with non-
linear failures.

Step 3. Identifying system monitors
A system monitor is any subcomponent that, by way of a signal,
can alter the range of functionality of the parent component. A
software example is an "exception handler", which acts as a
functional subcomponent that receives a signal and alters the
functional range of a parent computational component. In the
hardware world an example can be seen in pressure relief valves
which change the functional range of the storage tanks to which
they are physically attached. Without the monitor the parent
component would lose functionality based on certain input
flows. For the software example, that means the parent
mathematical operation could not have operated on the
incoming data or signal flow. In the mechanical example the
storage tank could not store the incoming material flow based
on capacity. However, with the action of the monitor the parent
functional component can operate on the flow without loss of
functionality. This step is critical for determining how the
system can alter the propagation failure.

Step 4. Establishing scenarios
Once the model is established, a scenario can be analyzed using
the knowledge of the system component behavior. A scenario is
evaluated according to the rules of the FFL reasoner over
discrete time steps. A fault or error is induced at any functional
component and allowed to naturally propagate through the
system. Using FFIP it is possible to have multiple fault
injections points. This can be used to analyze system reliability
in scenarios of multiple simultaneous and independent
component failures.

Step 5. Comparing multiple scenarios
Finally, by a comparison of multiple component failures, a
pattern of fault propagation paths can be mapped. This
mapping will reveal key components that require monitors for
early fault detection. Additionally, the mapping can be used to
compare different system configurations.

CASE STUDY: RCS JET-FAILED LEAK MONITOR
For an example system this method is applied to the redundancy
management system of the reaction control system (RCS) jet.
This example has been explained and developed in [25, 26].
These RCS jets are responsible for the maneuvering of the
space shuttle as well as other space vehicles. These jets
maneuver the vehicle through a controlled combustion of fuel
and an oxidizer. The redundancy management software is a
subset of the larger data processing software and is involved in
jet selection (there are 44 on the shuttle), warning systems, and
pilot control. There are several parts of the redundancy
management software that deal with monitoring RCS jet

Copyright © 2008 by ASME

1

3
£ £ £ g £ « -

4 Ik

•

* 5

•* g
S ~
1 u

* • :

A

IS)
O

Si

6 5 a
si es

BJ

*
e

3 e

9
St

'—
C
e

U
a:

SI
iZ

Copyright © 2008 by ASME

intuM command im

T•nip*rota-e. piessjit
-at** pontion, ac.d lt'« *• * **

command sijnals

RCS Redundancy Management

Jal-Faileil Leak Moiiiloi

— » ""TST"* •*> EvUuM
nyppanicr. .•

•

ryelM • Indicaw Jet J

Figure 3: Functional model of RCS Jet-Failed Leak monitor

operation. The software component that monitors for leaks
does so by evaluating temperature data from the fuel and
oxidizer injectors and flags a jet as having a failure by leak if
the temperature data is out of bounds for three or more cycles.
This software component is called the "Jet-Failed Leak
monitor.'' There are other monitors for detecting jet failures
based on firing commands and reaction chamber pressure.

Step 1.
Figure 1 demonstrates a possible early stage design model for
the RCS system. In this model, blocks represent system
components and lines connecting the blocks represent the
material, energy, or information between components. (For
clarity, solid lines represent material and dashed lines represent
signals). It is important to note that most of the component
blocks could be further broken down into smaller
subcomponents and flows. There is no minimum level of model
depth or complexity for FFIP, making it a useful tool in the
design stage when there is limited system knowledge. However,
as with all models greater fidelity provides more system
information.
Under designed operation, a leak in either the fuel or the
oxidizer lines is monitored with the use of temperature sensors
on the injectors and in the jet exhaust. The temperature signals,
along with chamber pressure and valve manifold position, are
bundled in the multiplexer and sent to the shuttle computers and
to ground computers. The redundancy management software
receives the signals from the RCS of temperature, pressure, and
valve position for all 44 jets and also receives a signal from
their reaction jet drivers (RJDs) indicating the command that
was sent to the fuel and oxidizer valves. The failed leak
monitor will flag a leak after three clock cycles. The flag
becomes a warning that is sent to the operator console. The
flight control system can send a command to the RCS
redundancy management software that inhibits the software and
allows the digital autopilot (DAP) to ignore the warnings from
the redundancy monitors. Under manual flight control the DAP
collects the jet functionality information from all of the
monitors in the redundancy management and selects the jets to
be fired based on jet availability and the maneuvering
information from the operator. The DAP sends fire commands
to the individual RJDs which in turn open or close valves as
mentioned previously. Due to the complexity of this system.

only the components involved with the jet failed leak monitor
are developed in the later failure scenarios.
Applying the FFIP framework to this system requires the
development of a functional model and a behavior model. The
functional model for this system can be seen in Figures 2 and 3.
Figure 3 is simply an expansion of the failed leak monitor to
illustrate that the software and hardware components of the
system can be evaluated at similar fidelity levels. In this model
blocks represent functional components of the system that are
directly linked to the configuration model. Some functions are
not represented such as transport for the signals and material
flows. The O-ring failure from the Challenger shuttle tragedy
clearly illustrates that these lesser implied functions should
certainly be considered in a more thorough analysis. For
simplicity, however, this example lumps these functions into
other components that are represented in the model. For
example a leak in the fuel transport lines can be seen as a leak
in the fuel tank, either would have the same effect on the
functionality of the RCS control while exact leak location
would have greater importance for other failures. The flow of
material and signal in this model is represented by the lines
connecting the functional blocks. For clarity the material flow
of fuel and oxidizer are represented with solid lines while the
signals are separated between dashed and dotted lines. The
dashed lines are generally assumed to be analog signals or
voltages and the lighter colored lines represent command
signals. The dotted lines represent data and are the primary
flow within the software components of this system. Again,
there are flows not explicitly represented in this example that
are instead represented by broader functional blocks.

Step 2.
The component behavior models are the known states of each
component, both operating and in failure. Several different
repositories could be used to determine the possible failed states
for the functional representations of hardware components. The
behavior models of valves and sensor are fairly generic across
systems but the system specific components indicate the benefit
of system specific repositories for thorough model analysis.
Because the software components are represented in a
functional model and not in architectural form, component
behavior is generally limited to "functioning*" and not
"functioning."

Step 3.
The system monitors are easily identified by name. The failed
leak monitor, through the digital auto pilot, alters the
functionality of the RCS so that functionality of the RCS is not
lost. The other redundancy management monitors behave
likewise. An additional system monitor is found in the pilot
controls and the RCS redundancy management inhibit
command. Flight control can alter the functionality of the
redundancy software with the inhibit command, preserving the
functionality of the system as a whole.

Copyright © 2008 by ASME

Jet Driver Signal

Functional

Model

Configuration 02
Flow Graph

JDSiQ

Function
Failure
Logic

if (D2 = = no data)

Evaluate = = lost

DStault = = tine

if(D2 = = «ron

Evaluate! * = lost

Default - = true

i!"(D2fauit = = mie)

;f(Evaluate = = losf;

Evaluate = =m3lienanr

else

Evaluate = = bemz::

lftjDs;g = = opeui

if(Q: = = z«o>

guide fuel — lost

Q2t>nit = = true

.f (Q: • Q;:>

guide foe] = = degraded

Q;fault = =trae

else

guide fuel = = nominal

ifiJDsig = = closed;

if (QJ = = 2fIOl

guide fuel = = nominal

else

guide fiiel = = lost

COtault = = true

If(JDsig = = no signal!

guide tuel = = lost

Q2fault = = Hue

if tQl fault = = tnie)

if (guide fuel = = lost)

temps tate = = malignant

else

tempstate = = benign

if(JDsigfault = = tme)

if'guide fuel = = losn

terapsrate = = malignant

else

tempsrate = = being:!

Figure 4: Functional fail logic for guide liquid and evaluate
comparison

Comparison
data"*'

Evaluate
Companion

D2
Evaluatot

Evaluation
Data

D3

Int'ccnrvr: ;
fun I crt Kf M

reroer*.'e. r/ewa I
v*t Msurai are firs —*-

mi5rar*i!;r3i

RCS Redundancy Management

Jet-Fated .eak Monitor

assets

^ L-*3.jtc

'" coToaraon

Can MaeM
' i,v or

'.'•: , *!Ttr;

-.^U---

W —

1_.

Figure 6: Scenario 1: Temperature sensor failure.

=•. v
C *

or °

is ~

a

-i

Copyright © 2008 by ASME

i

; i
I ;
i !

M

I
o

131 r Si si «-»-——

4 k

(
1

o N

0:. r"
' w 9 c..:

I- j

h^ti: ccrmor-ti
fram fight contra)

Temperature, pressure.
nta DowtBn arc fire -

conmndMpwi

RCS Redundancy Management

Jet-Failed Leak Monitor

Cciraaf $4ato to
gmetq

EvaL -rti
XTsiarscn

Indicate Jet
•jrvrt-or

Figure 8: Scenario 2: Software fault.

Step 4.
The failures within a scenario are reasoned through the FFL
rules. Two example FFL rule sets can be seen in Figure 4.
Using FFL logic rules two failure scenarios and the propagation
of failure through the system are represented in Figures 5
through 8. In the first failure scenario, illustrated in Figure 5
and Figure 6, the initiating failure is the temperature sensor
sending an inaccurate temperature signal. The signal sent from
this sensor is not indicative of the actual temperature of the
incoming fuel making this the propagation path of failure in the
system. This failure propagates nominally through the system
without affecting the functionality of any system components.
The failed-leak monitor operates on the incoming signal and
flags that jet as failed. The DAP automatically deselects that
jet, finally leading to the loss of functionality of the jet. At this
point the flight controller, based on other sensor data, inhibits
the RCS redundancy management software allowing the DAP to
return functionality to the previously deselected RCS jet.
The second scenario, shown in Figure 7 and Figure 8, presents
both a software and a hardware failure. The two initiating
failures are a leak in the fuel containment system and a fault in
the comparison function of the failed-leak monitor. The leak in
the fuel storage decreases the flow that the fuel valve operates
on causing failure to propagate through that component in such
a way as to lose the designed functionality. Failure then
propagates through the temperature sensor and to the jet where
the functionality is again lost due to insufficient flow. The
branch of failure that went through the temperature sensor
propagates through nominally. The fault in the software
comparison function causes the loss of functionality of the
evaluator component. The functional failure of the evaluator
component means that a failed leak flag is not triggered and no
fault information is delivered to the DAP. If these two faults are
simultaneous or the software function fails first the operator
may invoke the inhibit command to bypass the RCS redundancy
software. This is shown with the upper propagation path. The
faulty command from the flight controller propagates through
the system nominally and ends in the loss of function of the
RCS jet.

Copyright © 2008 by ASME

Step 5.
The result of comparing these two scenarios reveals important
design safety information. The failed-leak monitor and the
flight controller both act as monitors for this system. In the first
scenario if only the failed-leak monitor acted on the system then
the RCS jet function would be lost due to inaccurate
temperature data. However, the presence of a second monitor
can restore the functionality of the jet. In the second scenario
the failed-leak monitor is disabled and the flight control monitor
fails to identify the leak failure. These two scenarios illustrate a
possible insufficiency in system monitoring by the failed-leak
monitor and the flight controller monitor. Both monitors must
be in operation for safe control of the RCS jets. Depending on
the criticality and probabilities of these failure modes a designer
might consider redundant monitoring through pressure or flow
sensors would be one way to improve monitor reliability.
Alternatively a different system configuration that provides
more pertinent information to all the monitors would improve
the effectiveness of each monitor. For example if the flight
controller also received the injector temperature information
then the leak in the second scenario could have been identified.
If the failed-leak monitor also evaluated pressure or flow
information then a failed temperature sensor would not
propagate through the system as in the first scenario.

DISCUSSION
Evaluating the above two example failure scenarios provides
insight into how the FFIP framework can be extended to
analyze software-driven hardware systems. Where previous
work focused on highlighting component failures, the proposed
methodology highlights the propagation path of failure in a
system. This additional information for the above example
highlighted the strong dependency of the two system monitors
and the path of that dependency. Although it is possible that the
dependency of the monitors could be inferred through previous
FFIP evaluation, the key components of that dependency would
not be readily apparent. Secondly, this paper illustrates how the
FFIP framework can be expanded to integrate software and
hardware components and evaluate simultaneous, independent
failures.
In addition to the above analysis, the way that propagation of

failure affects system components could be used for design
decision making. In the first example scenario, the failure
initiated by the temperature sensor propagates through the
system without affecting the functionality of any other
component until it reaches the actual jet. Failures that
propagate through a component can be defined as benign when
they do not change the functionality of that component and
malignant when they do change the functionality. This analysis
shows that the first scenario has a predominantly benign failure
path, which as a result, goes unnoticed by the system monitors.
In contrast, in the second scenario multiple components change
functional states as a result of failure propagating through them.
This latter propagation path would be malignant through these

components. The biological analogy applies to the component
level and ends at the system level. Because of multiple
component failures, system monitors are provided with more
accurate information regarding system state. In the second
scenario, valve failure information would also indicate a fuel
leak to the redundancy software. In practice, this type of failure
propagation analysis could be used to design systems to have
key component failures to provide early warning information to
system monitors. By designing systems with low cost or easily
repaired/replaced components that consistently fail and can be
monitored, more important components can be saved by
informed system monitors. This is already done in simple
safety critical hardware such as automotive hydraulic jacks.
The functionality of the lever handle is usually designed to be
lost before the functionality of the hydraulic piston, effectively
mitigating the propagation of failure from the initiating fault of
too high a force on the jack.
For complex systems it is necessary to establish what type of
components, both hardware and software can act as key failure
points. Hardware components can be somewhat straight
forward and may be of assistance in establishing the kinds of
software components being sought. Key hardware failure
points are simple and inexpensive, such as pipe-valve
combinations that automatically limit flow, redundant sensors or
signal evaluators. All of these hardware components are only
key points of failure propagation based on specific system
configuration. It is reasonable then, that software specific key
components for failure propagation would be dependent on
software architecture. Therefore, it is clear that a form of
software architecture must be included in the FFIP
configuration model. Although the proposed methodology,
within the FFIP framework, modeled both the software and
hardware components in one integrated model, the software
side still represents an area that requires further research.
As well as research into the identification of what could act as
key components for failure propagation in software,
mechanisms for handling the functional flows for software
should also be developed. In the example scenarios it was
shown how failure flowed from physical components along the
material, energy and signal flows. However, in a software fault,
as described in the second scenario, the failure meant that there
was no fault information passed between components yet
successive components did fail for lack of that fault
information. It is yet to be established if this is consistently the
case for software faults or if there are alternative fault
behaviors.
Future work for this research includes expanding the
characterization of failure propagation with the probability of
the way a component would propagate failure. These
probabilities would be added into the component behavioral
model so that the function-failure reasoner would also evaluate
likely propagation paths. Also, an informed system designer
could be able to apply an FMEA style of criticality evaluation to
determine the risk associated with any fault path.

Copyright © 200X by ASME

Although evaluation of a system in the manner presented in this
paper can provide useful information about system reliability, it
is tedious because of the multiple software tools needed for
evaluation. A single software tool that a designer could use for
evaluating a complex system design within the FITP framework
would increase the usability of this methodology.

CONCLUSION
This paper presents the extension of the FFIP framework,
developed by Kurtoglu and Turner in [1, 2] to include software
by evaluating a software-driven hardware system. In addition,
the FFIP framework is expanded to include failure path
identification and characterization. The results of this latter
addition allow for the evaluation of system monitors and the
comparison of system monitor designs. Through evaluating two
failure scenarios with the proposed methodology, the
dependency and inadequacy of the two software monitors was
found and design changes became readily apparent from the
results of the analysis. With further research into the
incorporation of software in the established FFIP framework a
useful software tool could be developed to assist design
engineers in the evaluation and comparison of complex systems
in the design stage.

ACKNOWLEDGMENTS
This research is supported by the Air Force Office of Scientific
Research under Grant Number AFOSR FA9550-08-1-0158.
Any opinions or findings of this work are the responsibility of
the authors, and do not necessarily reflect the views of the
sponsors or collaborators.

REFERENCES

1. Kurtoglu, T, Turner, I. Y., A Graph-Based Fault
Identification and Propagation Framework for
Functional Design of Complex Systems. Journal of
Mechanical Design, 2008. Vol. 130(No. 5).

2. Kurtoglu, T., Turner, I. Y., A Risk-Informed Decision
Making Methodology for Evaluating Failure Impact of
Early System Designs, in Procedings of the ASME
2008 Internationa! Design Engineering Technical
Confrence & Computer and Information in
Engineering Confrence. 2008: Brooklyn, New York,
USA.

3. Lyu, M.R., Software Reliability Engineering: A
Roadmap. Future of Software Engineering (FOSE'07),
2001.fose:p. 153-170.

4. Teng, X., Pham, H., Reliability Modeling of Hardware
and Software Interactions, and its Applications. IEEE
Transactions on Reliability, 2006. Vol. 55(No. 4): p.
571-577.

5. Huang. B., Li, X., Bernstein, J., Smidts, C. , Study of
the Impact of Hardware Fault on Software Reliability,
in Proceedings of the 16th IEEE International

Symposium on Software Reliability Engineering. 2005,
ISSRE.

6. Martin, R.J., Marthur, A. P. . Software and Hardware
Quality Assurance: Towards a Common Platform for
High Reliability. in IEEE Conference on
Communication. 1990: Supercomm ICC '90.

7. Iyer, R.K., Hardware-Related Software Errors:
Measurement and

Analysis. IEEE Transactions on Software Engineering. 1985.
Vol. SE-ll(no. 2): p. 223-230.

8. Kanoun, K., Ortalo-Borrel. M. , Fault-Tolerant
Systems Dependability-Explicit Modeling of Hardware
and Software Component-Interactions. IEEE
Transactions on Reliability, 2000. Vol. 49(No. 4).

9. Chrsitmansson. J.. Hiller. M..Rimen. M. An
Experimental Comparison of Fault and Error
Injection, in The Ninth International Symposium on
Software Reliability Engineering 1998: ISSRE.

10. Lyu, M.R., Handbook of Software Reliability
Engineering. 1996: IEEE Computer Society Press and
McGraw-Hill.

11. Li, B., Li, M., Ghose,S., Smidts, C. . Integrating
Software into PRA. in Nth International Symposium
on Software Reliability Engineering. 2003.

12. Defense, D.o., Procedures for Performing Failure
Mode, Effects, and Criticality Analysis, MIL-STD-
1629A, Editor.

13. Vesely, W.E., Goldberg. F.F., Roberts. N.H., Haasi. D.,
The Fault Tree Handbook. Vol. NUREG 0492. 1981:
US Nuclear Regulatory Commission.

14. Greenfield, M.A., NASA's Use of Qualitative Risk
Assessment for Safety Upgrades, in IAAA Symposium.
2000: Rio De Janeiro, Brazil.

15. Nejad, H.S., Zhu, D., Mosleh, A. . Hierarchical
Planning and Multi-Level Scheduling for Simulation-
Based Probabilistic Risk Assessment, in Proceedings
of the 39th conference on Winter simulation. 2007.
Washington D.C., USA.

16. Zhu, D., Integrating Software Behavior into Dynamic
Probablistic Risk Assessment, in Reliability
Engineering. 2005, University of Maryland

17. Caughlin. D. Integration of Object-Oriented and
Functional Modeling and Design Methods, in
Proceedings of SPIE - The International Society for
Optical Engineering. 1997.

18. Wang, E.Y, Cheng, Betty H.C., Formalizing the
functional model within object-oriented design.
International Journal of Software Engineering and
Knowledge Engineering. 2000. Vol. 10(No. I): p. 5-
30.

19. Hirtz. J., Stone. R. B., et all, A Functional Basis for
Engineering Design: Reconciling and Evolving
Previous Efforts. Research in Engineering Design,
2002. 13(2): p. 65-82.

10 Copyright © 2008 by ASME

20. Stone, R.B.. Wood, Kristin L., Development of a
Functional Basis for Design. Journal of Mechanical
Design, 2000. Vol. 122(No. 4): p. 359-370

21. Nagel, R.L., Stone R. B., Hutcheson, R. S., McAdams
D. A., Donndelinger, J. . Function Design Framework
(FDF): Integrated Process and Function Modeling for
Complex System Design, in Proceedings of the ASME
2008 International Design Engineering Technical
Confrence and Computers and Information in
Engineering Conference. 2008. Brooklyn, New York,
USA: IDETC/CIE 2008.

22. Stone, R.B., Turner, Irem Y, The Function-Failure
Design Method. Journal of Mechanical Design, 2005.
Vol. 127(No. 3): p. 397-407

23. Dvorak. D.K... B. J.. Model Based Monitoring of
Dynamic Systems. IJCAI. 1989.

24. Wiliams, B.C., Nayak, R R A Model-based Approach
to Reacting Self-Configuring Systems, in Proceedings
ofAAAl-96. 1996.

25. Gruber, T.R., Vemuri, S., Rice. J. , Model-based
Virtual Document Generation. International Journal of
Human-Computers Studies, 1997. Vol. 46(No. 6): p.
687 - 706.

26. Patty, J., Dismukes. K. . RCS Jet Selection. NASA
human space flight reference article 2008. Available
from: http://spacetlight.nasa.gov/shuttle/reference/
shutref/orbiter/rcs/select.html.

11 Copyright © 2008 by ASME

